
Pulse of the Weddell Sea

Sampling Air-sea impacts on the Vertical Ocean using Uncrewed Robotics

Direct connections to T1, T2 & T4

Sampling Air-sea impacts on the Vertical Ocean using Uncrewed Robotics

Direct connections to T1, T2 & T4

Principal Investigator: Marcel du Plessis, UGOT, air-sea interactions

Co-Pls:

- » Sebastiaan Swart, UGOT, upper ocean physics, air-sea interactions
- » Isabelle Giddy, UGOT, upper ocean turbulence

Project Participants:

- » Sarah Nicholson, SOCCO-CSIR: ocean turbulence, air-sea interactions
- » Brian Ward, National University of Ireland: ocean turbulence, air-sea interactions
- » John Prytherch, SU: air-sea flux observations
- » Bastien Queste, UGOT: ocean gliders and biogeochemistry
- » Johan Edholm, UGOT: USV, fine scale fronts, and ADCP derives velocities
- » Carol-Anne Clayson, WHOI: air-sea interactions
- » Jim Edson, WHOI: air-sea interactions
- » Sabrina Speich, ENS Paris: marine atmosphere boundary layer dynamics
- » Sam Fredriksson, SMHI: ocean turbulence, air-sea interactions

Scientific hypotheses / Research questions

- 1. What sets the magnitude and variability of the air-sea heat and carbon exchange in the Antarctic Marginal Ice Zone?
- 2. What are the short and long-term impacts of polar cyclones on the ocean heat content and transport?
- 3. How does synoptic-scale variability modulate submesoscale dynamics associated with sea-ice processes?

Parameters measured within the project

CTD Temperature Salinity Chlorophyll Oxygen DIC

Underway Meteorology

Salinity

Velocity

Oxygen

- Temperature » Air Temperature Relative humidity
 - Wind speed Downwelling longwave and shortwave radiation Cloud properties

Direct Covariance

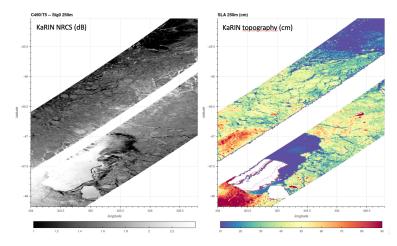
- 3D winds
- Water vapour
- CO_2

USVs

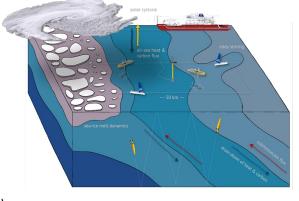
- 3D winds
- Air-sea temp
- Relative humdity
- Pressure
- Rainfall + PWV
- Waves
- **ADCP**

X-Spar

- 3D winds
- Air-sea temp
- Relative humidity
- Pressure
- Rainfall
- Waves



Type of data collection


Sea-ice edge survey northward and within sea-ice edge

~2 days for deployment, 8 days (roughly 2 synoptic periods)

- » Deploy USVs (Wave Gliders & Sailbuoys)
 - A-frame winch aft deployment using quick release
 - Approximately 3 hours for deployment
 - Intercalibration ongoing during other deployments
- » Deploy X-Spar buoy
 - Approximately 3 hours for deployment
- » Deploy other autonomous instrumentation (e.g. Seb Swart & Bastien Queste projects)
 - Seagliders, SeaExplorers, ASIP profiler etc.
 - 4 -6 hours required
- » Deep CTD cast for calibration of instrumentation
 - Characterisation of upper ocean oceanography (e.g. Adam Ulfsbo project and others)
- » Ship grid-style survey overlapping with autonomous vehicles, excursions into and out of the sea ice edge
 - Eddy covariance and mean meteorology running (connection to John Prytherch)
 - Underway T, S, Alkalinity

Logistic support requirements

» Mean meteorology sensor installed on ship mast

- Wind speed and direction, relative humidity, air temperature, rainfall, pressure, downwelling shortwave and longwave radiation
- Possible collaborative installation of ceilometer, lidar, radiosondes...

» Direct Covariance Flux System

- Mast on forefront of the bow, preferable extention forward to reduce wind distortion effect
- Container near the mast on the ship bow with power supply + regular access

» Aft winch / side crane

Deployment & recovery of Uncrewed Surface Vehicles (~2 m) and X-Spar buoy (14 m height)

» Zodiac

Deployment and recovery of autonomous instrumentation

» Integrated ship sampling operations

- CTD
- Towed underway system highly advantageous (e.g. MVP)
- Underway TSG system
- Salinometer for salinity calibration

» Space:

- Bench space for chlorophyll filtration and oxygen titration (collab?)
- Sufficient storage for autonomous instrumentation and open air testing
- 5 berths (overlap with other projects, e.g. S. Swart, J. Prytherch, B. Queste)

